Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells.

نویسندگان

  • Piotr Piatkowski
  • Boiko Cohen
  • Francisco Javier Ramos
  • Maria Di Nunzio
  • Mohammad Khaja Nazeeruddin
  • Michael Grätzel
  • Shahzada Ahmad
  • Abderrazzak Douhal
چکیده

Organic-inorganic hybrid perovskite solar cells have emerged as cost effective efficient light-to-electricity conversion devices. Unravelling the time scale and the mechanisms that govern the charge carrier dynamics is of paramount importance for a clear understanding and further optimization of the perovskite based devices. For the classical FTO/bulk titania blocking layer/mesoporous titania/perovskite/Spiro-OMeTAD (FTO/TPS) cell, further detailed and systematic studies of the ultrafast events related to exciton generation, electron and hole transfer, ultrafast relaxation are still needed. We characterize the initial ultrafast processes attributed to the exciton-perovskite lattice interactions influenced by charge transfer to the electron and hole transporters that precede the exciton diffusion into free charge carriers occurring in the sensitizer. Time-resolved transient absorption studies of the FTO/perovskite and FTO/TPS samples under excitation at different wavelengths and at low fluence 2 (μJ cm(-2)) indicate the sub-picosecond electron and hole injection into titania and Spiro-OMeTAD, respectively. Furthermore, the power-dependent femtosecond transient absorption measurements support the ultrafast charge transfer and show strong Auger-type multiparticle interactions at early times. We reveal that the decays of the internal trap states are the same for both films, while those at surfaces differ. The contribution of the former in the recombination is small, thus increasing the survival probability of the charges in the excited perovskite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells

Abstract: Perovskite solar cells have become an attractive subject in the solar energydevice area. During ten years of development, the energy conversion efficiency has beenimproved from 2.2% to more than 22%, and it still has a very good potential for furtherenhancement. In this paper, a numerical model of the perovskite solar cell with thestructure of glass/ FTO/ TiO2/...

متن کامل

Planar perovskite solar cells using fullerene C70 as electron selective transport layer

Owing amongst other to its high electron mobility, fullerene C70, has been widely used as an electron transporting layer in organic solar cells. In this research, we report the use of C70 thin films as electron transport layers of planar perovskite solar cells (PSCs) using a conventional device structure. The thickness of the C70 layer has been optimized to achieve the best efficiency of 12%. I...

متن کامل

Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells

Lead halide perovskites have recently been used as light absorbers in hybrid organic–inorganic solid-state solar cells, with efficiencies as high as 15% and open-circuit voltages of 1 V. However, a detailed explanation of the mechanisms of operation within this photovoltaic system is still lacking. Here, we investigate the photoinduced charge transfer processes at the surface of the perovskite ...

متن کامل

Hierarchically Structured Hole Transport Layers of Spiro-OMeTAD and Multiwalled Carbon Nanotubes for Perovskite Solar Cells.

The low electrical conductivity of spiro-OMeTAD hole transport layers impedes further enhancements of the power conversion efficiency (PCE) of perovskite solar cells. We embedded multiwalled carbon nanotubes (MWNTs) in spiro-OMeTAD (spiro-OMeTAD/MWNTs) to increase carrier mobility and conductivity. However, direct electrical contact between CH3 NH3 PbI3 and the MWNTs created pathways for undesi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 22  شماره 

صفحات  -

تاریخ انتشار 2015